Sains Malaysiana 53(11)(2024): 3731-3744
http://doi.org/10.17576/jsm-2024-5311-15
Highly
Crystalline, Pure ZSM-5 from K2CO3-Treated Mud and Its Catalytic Activity in
Biodiesel Production
(Tinggi Hablur,
ZSM-5 Tulen daripada Lumpur DirawatK2CO3 dan Aktiviti Pemangkinnya dalam Pengeluaran Biodiesel)
HARTATI HARTATI1,*, QURROTA
A’YUNI1, MEDYA AYUNDA FITRI2,
ADIBA NAILA IZZAH1, MELINDA INTAN NOVITALINA1,
PUTRI BINTANG DEA FIRDA1,
TAZKIYATUN NUFUS1, DIDIK PRASETYOKO3,
HARMAMI HARMAMI3,
HASLIZA BAHRUJI4 &
SHAHRUL NIZAM AHMAD5
1Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C,
UNAIR, Mulyorejo, Surabaya, 60115, Indonesia
2Department of
Chemical Engineering, Nahdlatul Ulama University Sidoarjo, Sidoarjo, 61234, Indonesia
3Department of
Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
4Center for Advanced
Material and Energy Science, Universiti Brunei
Darussalam, Jl. Tungku Link, Gadong BE1410, Brunei
5School of Chemistry
and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
Received: 19
April 2024/Accepted: 27 September 2024
Abstract
Addressing the challenge of clean energy and waste
management for sustainable development goals, ZSM-5 were synthesized from
high-abundance volcano mud (VM) precursor and then utilized as catalyst in
biodiesel production. Unlike conventional alkali treatment, we used the reflux
method to extract the silica-alumina from the VM. K2CO3 alkali salt was utilized as the extractor, activator, and structure-directing
agent. The synthesis was also performed using NaOH as a comparison. Various
analytical techniques were employed including XRD, FTIR, SEM-EDX, TEM, N2 physisorption, and GC-MS to identify the effect of alkali types on the
crystallization rate, morphology, and catalytic activity. Highly crystalline,
pure ZSM-5 was successfully synthesized. It is found that K2CO3 facilitates a slow crystallization rate, requiring a minimum of 5 h of
hydrothermal treatment to produce ZSM-5. Interestingly, slow crystallization
led to homogeneous ZSM-5 particles with a narrow size distribution and a high
mesoporous structure. In contrast, NaOH promoted a faster crystallization rate,
producing inhomogeneous ZSM-5 particles size with a dominant microporosity. Two different feedstock qualities i.e.,
waste cooking oil (WCO) and oleic acid (OA) were used to assess the catalyst’s
versatility. Among all zeolites synthesized using K2CO3,
ZK6 exhibited the highest activity, with an 85.9% yield and 30% selectivity for
FAME in WCO feedstock. In high-quality OA feedstock, ZK6 achieved significantly
higher activity of 97.1% yield with 87.6% selectivity for FAME. ZNa6, the
comparable sample synthesized with NaOH, achieved a 78.2% yield
with 60.4% FAME selectivity in WCO feedstock. A higher catalytic activity of
97.5% yield with 100% selectivity towards FAME was achieved using high-purity
OA feedstock.
Keywords: Biodiesel; K2CO3;
waste cooking oil; ZSM-5
Abstrak
Menangani cabaran tenaga bersih dan pengurusan sisa untuk matlamat pembangunan mampan, ZSM-5 telah disintesis daripada prekursor lumpur gunung berapi (VM) yang memiliki kelimpahan tinggi dan kemudian digunakan sebagai pemangkin dalam pengeluaran biodiesel. Berbeza daripada proses rawatan alkali konvensional, kami menggunakan kaedah refluks untuk mengekstrak alumina silika dalam VM. Garam alkali K2CO3 digunakan sebagai pengekstrak, pengaktif, serta agen pengarah struktur. Sintesis juga dilakukan menggunakan NaOH sebagai perbandingan. Pelbagai teknik analisis digunakan contohnya, XRD, FTIR, SEM-EDX, TEM, N2 fisisorpsi dan GC-MS untuk mengenal pasti kesan jenis alkali ke atas kadar penghabluran, morfologi dan aktiviti pemangkin. ZSM-5 tulen yang sangat kristal telah berjaya disintesis. Didapati bahawa K2CO3 memudahkan kadar penghabluran yang perlahan, memerlukan sekurang-kurangnya 5 jam masa hidroterma untuk menghasilkan ZSM-5. Menariknya, penghabluran perlahan membawa kepada zarah ZSM-5 homogen dengan taburan saiz sempit dan struktur mesoporus yang lebih tinggi berbanding ZSM-5 yang disintesis dengan NaOH. Sebaliknya, NaOH memudahkan kadar penghabluran yang lebih tinggi, menghasilkan saiz zarah ZSM-5 yang tidak homogen dengan struktur mikroporous yang dominan. Dua kualiti bahan mentah yang berbeza iaitu sisa minyak masak (WCO) dan asid oleik (OA) digunakan untuk mengenal pasti kepelbagaian pemangkin. Didapati bahawa antara semua pemangkin yang disintesis dengan K2CO3, ZK6 menunjukkan prestasi tertinggi dengan hasil 85.9% dan selektiviti 30% kepada FAME dalam bahan suapan WCO. Manakala dalam bahan suapan OA, ZK6 menunjukkan 97.1% hasil dengan 87.6% selektiviti kepada FAME. ZNa6, sampel setandingnya mencapai hasil 78.2% dengan selektiviti FAME 60.4% dalam bahan suapan WCO. Aktiviti pemangkin yang lebih tinggi sebanyak 97.5% hasil dengan selektiviti 100% terhadap FAME dicapai menggunakan bahan suapan OA ketulenan tinggi.
Kata kunci: Biodiesel; K2CO3; sisa
minyak masak; ZSM-5
References
Amalia Putri Purnamasari, Meyga Evi Ferama Sari, Desy Tri Kusumaningtyas, S. Suprapto,
Abdul Hamid & Didik Prasetyoko.
2017. The effect of mesoporous H-ZSM-5 crystallinity as a CaO support on the transesterification of used cooking oil. Bulletin of Ch44emical
Reaction Engineering & Catalysis 12(3): 329-336.
https://doi.org/10.9767/bcrec.12.3.802.329-336
Araújo Silva, D.S., Castelblanco,
W.N., Piva, D.H., de Macedo, V., Carvalho, K.T.G.
& Urquieta-González, E.A. 2020. Tuning the Brønsted and Lewis acid nature in HZSM-5 Zeolites by the
generation of intracrystalline mesoporosity - Catalytic behavior for the acylation of anisole. Molecular
Catalysis 492: 111026. https://doi.org/10.1016/j.mcat. 2020.111026
Bilskie, J. 2001. Soil water status: Content and
potential. Campbell Scientific 1784(435): 84321.
Bloom, N. & Van Reenen, J. 2013.
Synthesis of zeolite ZSM-5, reaction mixture therefor and product thereof. NBER
Working Papers.
Chanakaewsomboon, I., Tongurai,
C., Photaworn, S., Kungsanant,
S. & Nikhom, R. 2020. Investigation of
saponification mechanisms in biodiesel production: Microscopic visualization of
the effects of FFA, water and the amount of alkaline catalyst. Journal of
Environmental Chemical Engineering 8(2): 103538.
https://doi.org/10.1016/j.jece.2019.103538
Dai, W., Kouvatas,
C., Tai, W., Wu, G., Guan, N., Li, L. & Valtchev,
V. 2021. Platelike MFI crystals with controlled
crystal faces aspect ratio. Journal of the American Chemical Society 143(4): 1993-2004. https://doi.org/10.1021/jacs.0c11784
Dang Nguyen Thoai,
Pham Thi Le Hang & Dang Thi Lan. 2019. Pre‐treatment of waste cooking oil with high free fatty acids
content for biodiesel production: An optimization study via response surface
methodology. Vietnam Journal of Chemistry 57(5): 568-573.
Devaraj Naik, B. & Udayakumar,
M. 2019. Optimization studies on esterification of waste cooking oil using sulfated montmorillonite clay acidic catalyst. Materials
Today: Proceedings 46(Part 19): 9855-9861.
https://doi.org/10.1016/j.matpr.2020.11.419
Diaz, I. & Mayoral, A. 2011. TEM
studies of zeolites and ordered mesoporous materials. Micron 42(5):
512-527. https://doi.org/10.1016/j.micron.2010.12.005
Dorado, V., Herrerías,
C.I. & Fraile, J.M. 2023. Catalytic hydrolysis of epoxyfatty esters with solid sulfonic acids. Molecular
Catalysis 547: 113282. https://doi.org/10.1016/j.mcat.2023.113282
Gomes, G.J., Zalazar,
M.F. & Arroyo, P.A. 2022. New insights into the effect of the zeolites framework topology on the esterification reactions:
A comparative study from experiments and theoretical calculations. Topics in
Catalysis 65(7-8): 871-886. https://doi.org/10.1007/s11244-022-01606-5
Grand, J., Awala,
H. & Mintova, S. 2016. Mechanism of zeolites
crystal growth: New findings and open questions. CrystEngComm 18(5): 650-664. https://doi.org/10.1039/c5ce02286j
Guldhe, A., Singh, P., Ansari, F.A., Singh, B.
& Bux, F. 2017. Biodiesel synthesis from
microalgal lipids using tungstated zirconia as a
heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme
catalysts. Fuel 187: 180-188. https://doi.org/10.1016/j.fuel.2016.09.053
Guo, Y., Delbari,
S.A., Namini, A.S., Van Le, Q., Park, J.Y., Kim, D.,
Varma, R.S., Jang, H.W., T-Raissi, A., Shokouhimehr, M. & Li, C. 2023. Recent developments in
solid acid catalysts for biodiesel production. Molecular Catalysis 547:
113362. https://doi.org/10.1016/j.mcat.2023.113362
Hadeer S. El Saey,
Ahmed O. Abo EL Naga, Mohamed El Saied, Seham A.
Shaban, Soha A. Abdel-Gawad & S.A. Salih. 2023.
Kinetic and thermodynamic studies on the esterification of oleic acid
with methanol over sulfonated biochar catalyst derived from waste tea
dregs. Biomass and Bioenergy 176: 106892.
https://doi.org/10.1016/j.biombioe.2023.106892
Hartati, Wega Trisunaryanti, Rino Rakhmata Mukti, Ika Amalia Kartika,
Putri Bintang Dea Firda, Satriyo Dibyo Sumbogo, Didik Prasetyoko & Hasliza Bahruji. 2020. Highly
selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. Journal of the Energy Institute 93(6): 2238-2246.
https://doi.org/10.1016/j.joei.2020.06.006
Jonscher, C., Seifert, M., Kretzschmar, N., Marschall, M.S., Le Anh, M., Doert,
T., Busse, O. & Weigand, J.J. 2022. Origin of
morphology change and effect of crystallization time and Si/Al ratio during
synthesis of zeolite ZSM-5. ChemCatChem 14(3):
e202101248. https://doi.org/10.1002/cctc.202101248
Kowalska-Kuś, J., Held, A., Nowińska,
K. & Góra-Marek, K. 2024. LTA zeolites as catalysts for transesterification
of glycerol with dimethyl carbonate. Fuel 362: 130757.
https://doi.org/10.1016/j.fuel.2023.130757
Kulkarni, S.B., Shiralkar,
V.P., Kotasthane, A.N. & Borade,
R.B. 1982. Studies in the synthesis of ZSM-5 zeolites. Zeolites 2(4):
313-318.
Lamnatou, C., Cristofari,
C. & Chemisana, D. 2024. Renewable energy sources
as a catalyst for energy transition: Technological innovations and an example
of the energy transition in France. Renewable Energy 221: 119600.
https://doi.org/10.1016/j.renene.2023.119600
Li, T., Krumeich,
F., Chen, M., Ma, Z. & Van Bokhoven, J.A. 2020.
Defining aluminum-zoning during synthesis of ZSM-5
zeolites. Physical Chemistry Chemical Physics 22(2): 734-739.
https://doi.org/10.1039/c9cp05423e
Li, X., Han, S., Guan, D., Jiang, N., Xu,
J. & Park, S.E. 2021. Rapid direct synthesis of nano-H-ZSM-5 from leached illite via solid-like-state conversion-based
crystallization. Applied Clay Science 203: 106028.
https://doi.org/10.1016/j.clay.2021.106028
Liu, C., Gu, W., Kong, D. & Guo, H.
2014. The significant effects of the alkali-metal cations on ZSM-5 zeolite
synthesis: From mechanism to morphology. Microporous and Mesoporous
Materials 183: 30-36. https://doi.org/10.1016/j.micromeso.2013.08.037
Lønstad Bleken, B-T.,
Mino, L., Giordanino, F., Beato,
P., Svelle, S., Lillerud,
K.P. & Bordiga, S. 2013. Probing the surface of
nanosheet H-ZSM-5 with FTIR spectroscopy. Physical Chemistry Chemical
Physics 15(32): 13363-13370. https://doi.org/10.1039/c3cp51280k
Mao, Y., Cheng, J., Guo, H., Shao, Y.,
Qian, L. & Yang, W. 2023. Sulfamic acid–modified zeolitic imidazolate
framework (ZIF-90) with synergetic lewis and brønsted acid sites for microalgal biodiesel production. Fuel 331(P2): 125795. https://doi.org/10.1016/j.fuel.2022.125795
Md Sahabat Hossain, Md. Aftab Ali Shaikh, Md. Farid Ahmed & Samina Ahmed. 2023.
Synthesis and characterization of nano-crystallite
triple superphosphate from waste Pila globosa shells for sustainable industrial production. Materials Advances 4(10):
2384-2391. https://doi.org/10.1039/d3ma00102d
Medeiros Vicentini-Polette,
C., Rodolfo Ramos, P., Bernardo Gonçalves, C. & Lopes De Oliveira, A. 2021.
Determination of free fatty acids in crude vegetable oil samples obtained by
high-pressure processes. Food Chemistry 12: 100166.
https://doi.org/10.1016/j.fochx.2021.100166
Mosharof Hossain, Nuzhat Muntaha, Lipiar Khan Mohammad
Osman Goni, Mohammad Shah Jamal, Mohammad Abdul Gafur, Dipa Islam & Abu Naieum Muhammad Fakhruddin. 2021. Triglyceride conversion
of waste frying oil up to 98.46% using low concentration K+/CaO catalysts derived from eggshells. ACS Omega 6(51): 35679-35691. https://doi.org/10.1021/acsomega.1c05582
Modather F. Hussein, Ahmed O. Abo El Naga, Mohamed
El Saied, Mahmoud M. AbuBaker, Seham A. Shaban & Fathy Y. El Kady. 2021. Potato peel
waste-derived carbon-based solid acid for the esterification of oleic acid to
biodiesel. Environmental Technology and Innovation 21: 101355.
https://doi.org/10.1016/j.eti.2021.101355
Nermein Mostafa Marzouk, Ahmed O. Abo El Naga, Sherif A. Younis, Seham A.
Shaban, Abdel Monem El Torgoman & Fathy Y. El Kady. 2021. Process optimization of
biodiesel production via esterification of oleic acid using sulfonated
hierarchical mesoporous ZSM-5 as an efficient heterogeneous catalyst. Journal
of Environmental Chemical Engineering 9(2): 105035.
https://doi.org/10.1016/j.jece.2021.105035
Novita Andarini,
Tanti Haryati, Suwardiyanto Suwardiyanto & Yudi Aris Sulistiyo. 2022. Synthesis of zeolite Y from lapindo mud with the comparative variation of the weight of
NaOH/Mud and molar SiO2/Al2O3. Indonesian Chimica Letters 1(1): 8-12.
https://doi.org/10.19184/icl.v1i1.5
Pirzadi, Z. & Meshkani,
F. 2022. From glycerol production to its value-added uses: A critical review. Fuel 329: 125044. https://doi.org/10.1016/j.fuel.2022.125044
Ponce, S., Gangotena,
P.A., Anthony, C., Rodriguez, Y., Bazani, H.A.G.,
Keller, M.H., Souza, B.S., Vizuete, K., Debut, A.
& Mora, J.R. 2024. Aluminum-based catalysts
prepared in the presence of pectin for low-energy biodiesel production. Fuel 361: 130691. https://doi.org/10.1016/j.fuel.2023.130691
Praveena, V., Martin, L.J., Matijošius,
J., Aloui, F., Pugazhendhi,
A. & Varuvel, E.G. 2024. A systematic review on
biofuel production and utilization from algae and waste feedstocks - A circular
economy approach. Renewable and Sustainable Energy Reviews 192: 114178.
https://doi.org/10.1016/j.rser.2023.114178
Prodinger, S., Berdiell,
I.C., Cordero-Lanzac, T., Bygdnes,
O.R., Solemsli, B.G., Kvande,
K., Arstad, B., Beato, P., Olsbye, U. & Svelle, S. 2023.
Cation-induced speciation of port-size during mordenite zeolite synthesis. Journal
of Materials Chemistry A 11: 21884-21894.
Qurrota A’yuni, Ardhana Rahmayanti, Hartati Hartati, Purkan Purkan, Riki Subagyo, Nihayatur Rohmah, Luthfiyah Rifdah Itsnaini & Medya Ayunda Fitri.
2023. Synthesis and characterization of silica gel from lapindo volcanic mud with ethanol as a cosolvent for desiccant applications. RSC
Advances 13(4): 2692-2699. https://doi.org/10.1039/d2ra07891k
Reber, M.J. & Brühwiler,
D. 2015. Bimodal mesoporous silica with bottleneck pores. Dalton
Transactions 44(41): 17960-17967. https://doi.org/10.1039/c5dt03082j
Rezayan, A. & Taghizadeh,
M. 2018. Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study. Process
Safety and Environmental Protection 117: 711-721.
https://doi.org/10.1016/j.psep.2018.06.020
Ribeiro, F.C.P., Santos, J.L., Araujo,
R.O., Santos, V.O., Chaar, J.S., Tenório,
J.A.S. & de Souza, L.K.C. 2024. Sustainable catalysts for esterification:
Sulfonated carbon spheres from biomass waste using hydrothermal carbonization. Renewable
Energy 220: 119653. https://doi.org/10.1016/j.renene.2023.119653
Sathish Kumar, R.K, Sasikumar, R. & Dhilipkumar, T. 2024. Generation, bio-composite production,
and environmental considerations. Journal of Cleaner Production 435:
140536. https://doi.org/10.1016/j.jclepro.2023.140536
Schulze-Makuch,
D., Haque, S., Beckles, D., Schmitt-Kopplin, P., Harir,
M., Schneider, B., Stumpp, C. & Wagner, D. 2020.
A chemical and microbial characterization of selected mud volcanoes in trinidad reveals pathogens introduced by surface water and
rain water. Science of the Total Environment 707: 136087. https://doi.org/10.1016/j.scitotenv.2019.136087
Rajasree Shanmuganathan,
N.D. Nguyen, Mysoon M. Al-Ansari, Ezhaveni Sathiyamoorthi, Jintae Lee
& S.D. Priya. 2024. Identification of suitable catalyst among HZSM-5, HY
and γ-Al2O3 to obtain upgraded pyrolysis oil with
augmented liquid oil yield. Environmental Research 260: 119587.
https://doi.org/10.1016/j.envres.2024.119587
Su, C-H. 2013. Recoverable and reusable
hydrochloric acid used as a homogeneous catalyst for biodiesel production. Applied
Energy 104: 503-509. https://doi.org/10.1016/j.apenergy.2012.11.026
Thommes, M. 2010. Physical adsorption
characterization of nanoporous materials. Chemie-Ingenieur-Technik 82(7): 1059-1073. https://doi.org/10.1002/cite.201000064
Trisunaryanti, W., Triyono, Paramesti, C., Larasati, S., Santoso, N.R. & Fatmawati,
D.A. 2020. Synthesis and characterization of Ni/NH2/mesoporous
silica catalyst from lapindo mud for hydrocracking of
waste cooking oil into biofuel. RASAYAN Journal of Chemistry 13(3):
1386-1393.
Van Poecke, A.,
Tabari, H. & Hellinckx, P. 2024. Unveiling the
backbone of the renewable energy forecasting process: Exploring direct and
indirect methods and their applications. Energy Reports 11: 544-557.
https://doi.org/10.1016/j.egyr.2023.12.031
Wan Nur Aifa Wan Azahar, Mastura Bujang, Ramadhansyah Putra Jaya, Mohd Rosli Hainin,
Azman Mohamed, Norzita Ngadi & Dewi Sri Jayanti. 2016. The potential of waste
cooking oil as bio-asphalt for alternative binder - An overview. Jurnal Teknologi 78(4): 111-116. https://doi.org/10.11113/jt.v78.8007
Wang, H., Shen, B., Chen, X., Xiong, H., Wang, H., Song, W., Cui, C., Wei, F. & Qian,
W. 2022. Modulating inherent lewis acidity at the
intergrowth interface of mortise-tenon zeolite catalyst. Nature
Communications 13: 2924. https://doi.org/10.1038/s41467-022-30538-7
Wang, Z., Jiang, X., Pan, M. & Shi, Y.
2020. Nano-scale pore structure and its multi-fractal characteristics of tight
sandstone by N2 adsorption/desorption analyses: A case study of shihezi formation from the sulige gas filed, Ordos Basin, China. Minerals 10(4): 377.
https://doi.org/10.3390/min10040377
Weckhuysen, B.M. & Wachs,
I.E. 2001. Catalysis by supported metal oxides. In Handbook of Surfaces and
Interfaces of Materials, Vol. 1., edited by Nalwa,
H.S. Massachusetts: Academic Press. pp. 613-648.
Wu, Q., Shu, Q., Guo, W. & Xing, X.
2024. Preparation of Brönsted-Lewis dual acidic
catalyst Ce-HPW-F and its simultaneous catalytic esterification and
transesterification of oleic acid and castor oil with methanol to synthesize
biodiesel. Fuel 361: 130668. https://doi.org/10.1016/j.fuel.2023.130668
Xu, L., Zhang, J., Ding, J., Liu, T., Shi,
G., Li, X., Dang, W., Cheng, Y. & Guo, R. 2020. Pore structure and fractal
characteristics of different shale lithofacies in the dalong formation in the western area of the lower Yangtze platform. Minerals 10(1): 72. https://doi.org/10.3390/min10010072
Yadav, N., Yadav, G. & Ahmaruzzaman, M. 2023. Fabrication of surface-modified dual
waste-derived biochar for biodiesel production by microwave-assisted
esterification of oleic acid: Optimization, kinetics, and mechanistic studies. Renewable
Energy 218: 119308. https://doi.org/10.1016/j.renene.2023.119308
Yang, J., Cong, W.J., Zhu, Z., Miao, Z-D.,
Wang, Y.T., Nelles, M. & Fang, Z. 2023.
Microwave-assisted one-step production of biodiesel from waste cooking oil by
magnetic bifunctional SrO–ZnO/MOF
catalyst. Journal of Cleaner Production 395: 136182.
https://doi.org/10.1016/j.jclepro.2023.136182
Ye, H., Shi, J., Wu, Y., Yuan, Y., Gan, L.,
Wu, Y., Xie, H., Pugazhendhi,
A. & Xia, C. 2024. Research progress of nano-catalysts
in the catalytic conversion of biomass to biofuels: Synthesis and application. Fuel 356: 129594. https://doi.org/10.1016/j.fuel.2023.129594
Zhang, P., Li, S. & Zhang, C. 2019.
Solvent-free synthesis of nano-cancrinite from rice
husk ash. Biomass Conversion and Biorefinery 9(3): 641-649.
https://doi.org/10.1007/s13399-019-00375-8
Zhang, Q., Zhang, Y., Deng, T., Wei, F., Jin, J. & Ma, P. 2019. Sustainable production of
biodiesel over heterogeneous acid catalysts. In Biomass, Biofuels,
Biochemicals: Recent Advances in Development of Platform Chemicals, edited
by Saravanamurugan, S., Pandey, A., Li, H. & Riisager, A. Elsevier. https://doi.org/10.1016/B978-0-444-64307-0.00016-0
*Corresponding author; email:
hartati@fst.unair.ac.id